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Spike-timing-dependent plasticif5TDP has recently been shown in some physiological studies. STDP
depends on the precise temporal relationship of presynaptic and postsynaptic spikes. Many authors have
indicated that a precise balance between long-term potenti@titi®) and long-term depressioftTD) of
STDP is significant for a stable learning. However, a situation in which the balance is maintained precisely is
inconceivable in the brain. Using a method of the statistical neurodynamics, we show robust retrieval proper-
ties of spatiotemporal patterns in an associative memory model against the imbalance between LTP and LTD.
When the fluctuation of LTD is assumed to obey a Gaussian distribution with mean 0 and va¥tarhe
storage capacity takes a finite value even at latg&his means that the balance between LTP and LTD of
STDP need not be maintained precisely, but must be maintained on average. Furthermore, we found that the
basin of attraction becomes smaller &icreases while an initial critical overlap remains unchanged.
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[. INTRODUCTION nism for sequential learning in the brain. Some authmrs
merically investigated the impact of the imbalance between

A recent experimental finding indicates that synapticLTP and LTD on the network properti¢d,14].
modification in cortical neurons depends on the precise tem- The aim of this paper is t@nalytically discuss the re-
poral relationship between presynaptic and postsynaptitfieval properties of spatiotemporal patterns in an associative
spikes[1-3]. In particular, presynaptic spikes that precedememory model that incorporates the imbalance between the
postsynaptic firing induce a long-term potentiati@P) by ~ LTP and LTD of STDP using a method of the statistical
no more than 20 ms, while those that follow postsynapticneurodynamic$16,20,23. According to our previous work,
firing induce a long-term depressighTD), with a rapid  when the balance is not precisely maintained, it is impossible
transition(a few m3. The magnitude of synaptic modifica- to cancel out the information of firing rate. Consequently,
tion decays exponentially with the time interval between pr-cross-talk noise diverges. However, if the magnitudes of the
esynaptic and postsynaptic spikes. This form of synaptid-TP and LTD are equivalent on average in a learning pro-
modification has been called spike-timing-dependent plasticcess, it may be possible to stably retrieve spatiotemporal pat-
ity (STDP [4] or temporally asymmetric Hebbia(TAH)  terns. Since the ratio of the LTP and LTD is crucial, the
learning[5,6]. magnitude of the LTD changes while that of the LTP is fixed.

The functional role of STDP has been investigated byWe found that the storage capacity takes a finite value even
many authors. They showed that STDP is a mechanism faat large § when the fluctuation of the LTD is assumed to
synaptic competitio4—9] or a learning mechanism of se- obey a Gaussian distribution with mean 0 and variafice
quential patterng10-16. An symmetric learning window This implies that the balance between the LTP and LTD of
depending on spike timing similar to STDP has been studie@TDP need not to be maintained precisely, but must be main-
and shown to be an appropriate learning rule for sequentidhined on average. This mechanism might work in the brain.
patterns[17—19. However, this asymmetric learning rule Furthermore, we found that a basin of attraction becomes
does not involve LTD. Some authors showed that the balancemaller asé increases while an initial critical overlap re-
between the LTP and LTD of STDP is significant for stablemains unchanged.
learning[4,14-18. In our previous work, we analytically
showed that STDP has the same qualitative effect as the co-
variance rule when the spatiotemporal patterns are stored IIl. MODEL
since the differences between spike times that induce LTP or The model contains binary neurons with reciprocal con-

LTD are capable of canceling out the effect of the firing ratepections. Each neuron has a binary stel}. We define

information[16]. In the brain, a situation in which the bal- giscrete time steps and the following rule for synchronous
ance is maintained precisely is inconceivable. The datgpgating:

points obtained by experiments are fluctuated in different
trials [1,3]. Therefore, it is meaningful to discuss more bio-

N
logical plausible situation to investigate the neuronal mecha-
Ui(t): 21 J”XJ(t), (1)
i=
*Email address: xmatumo@brain.riken.go.jp
"Email address: okada@brain.riken.go.jp Xi(t+1)=F[u;(t)— 0], (2
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FIG. 1. The time function of STDP in our model. The LTP is
induced when thg¢th neuron fires one time step before ilie one.
LTD is induced when thé¢th neuron fires one time step after ttike
one. ¢/ follows a Gaussian distribution with meanand variance
62

1, u=0,

FW=1g <o ©

wherex;(t) is the state of théth neuron at time, u;(t) is the
internal potential of that neuron, ardis a uniform thresh-
old. If the ith neuron fires at, its state isx;(t)=1; other-
wise, x;(t) =0. J;; is the synaptic weight from thgh neuron
to theith neuron. Each elemesf' of the uth memory pat-
tern & =(&1,&5, ... &N) is generated independently by

Prolf &= 1]=1—Prolf &'=0]=f. (4)

The expectation o&* is E[ £&/]=f, and thudf is considered

to be the mean firing rate of the memory pattern. The

memory pattern is sparse whén-0 and this coding scheme
is called sparse coding.
The synaptic weighi;; follows the form of synaptic plas-
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model. Whene{j=0, the balance between the LTP and LTD
is precisely maintained and then the model is equivalent to
the previous modgl16]. A sequence op memory patterns is
stored by STDP:&'—&—... P& —... . In other
words, & is retrieved at=1, & is retrieved at=2, and&*

is retrieved at=p+1. There is a critical valuerc of the
loading rate, so that the loading rate larger thanmakes
retrieval of the pattern sequence unstallg. is called the
storage capacity.

Ill. THEORY

In this section, we derive dynamical equations that de-
scribe the retrieval properties of the network. In this paper,
we consider the thermodynamic limit—occ. Theith neu-
ronal internal potentiali;(t) at timet can be expressed as

N
Ui(t):Zl Jijx;(t)

E 2 {grrter

Nf(l f)J 1 p=1

—(1+ E )f’“ 1§,u}x (1) ®
1 2 2 M+1§H_§M_1§‘M)X'(t)
TNf(I-T) &L A O R
Nop
Nf(l f 2 Z TR0, 7)

Using the periodic boundary condition 6[’”—5, and &’

=&P, Sh_ (gt gty =P (g e gt

ticity, which depends on the difference in spike times be-yith ¢ = g# f. Using this relatlonsh|pu,(t) is given by

tween theith (pos) and jth (pre) neurons. The time differ-
ence determines whether LTP or LTD is induced. This type
of learning rule is called spike-timing-dependent plasticity
(STDP. The biological experimental findings show that the
LTP or LTD is induced when the difference in the presynap-
tic and postsynaptic spike times falls within about 20[8ls

We define a single time step in equatidids—(3) as 20 ms,
and durations within 20 ms are ignored. The learning rule
based on STDP conforms to this equation:

1

p
I=NTI=T 2 Qe e ) ©)

The number of memory patterns jis= aN, wherea is de-
fined as a loading rate. The LTP is induced when ftie
neuron fires one time step before tith neurongf‘*l:gj”
=1, while the LTD is induced when thigh neuron fires one
time step after théth neurongi’"1=§f‘= 1. Since the ratio
of the LTP and LTD is crucial, the magnitude of the LTD

changes while the magnitude of the LTP and the time dura-

tion are fixed.€f is generated independently and obeys a

Gaussian distribution with meaa and variances?: eﬁ

061914-2

_(§t+l t 1

N p

Teptl T su—1\ g2

Nf(l 3 glgl@f‘ —&HEx
N p
NFT 2 2, ©

) =1 im1

Tt ®

\\Mu

(5““ ETHmA(L)

N p
NI 2 2, S e )

+E (=g hme(t)

N p
Nf(l f) 2 Z ST (), (10)

wherem#(t) is an overlap betweeg#(t) andx(t) and is
~ M, 6%). Figure 1 shows the time function of STDP in our given by
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N
mA(t) = Nf(l 9 2 Xi(t). (11)

The first term in Eq(10) is a signal term for the retrieval of
the target patterré '*1. The second and third terms are

o
[]
. . :o.e_'_._'._'_‘_,_,_,_,_.—o—'-"
cross-talk noise terms that represent contributions from non- 2

target patterns other thah' ! and that preveng '** from

being retrieved. The third term is also a compensation term
originated by a deviation from the balance between the LTP 02

and LTD of STDP. Since this term is of ordsrwith respect
to N, O(N), whene#0, it diverges in the thermodynamiit

limit N—oo. This means that the stored limit cycle using the

present learning rul€Eg. (5)] is unstable in the limit olN
—oo when e#0. Therefore, we will discuss the=0 case
eli~N0,5%).

We derive the dynamical equations using the method of 08

statistical neurodynamids6,20,23. When it is possible to S

store a pattern sequence, a cross-talk noise term, that is, the §0-6_._'_._,_,,_._.—-r

o

second and third terms in Eq10) is assumed to obey a

Gaussian distribution with the average 0 and time-dependent

variances?(t) [16,20. We derive the recursive equations for

m'(t) and o%(t) to investigate whether the memory pattern

£'is retrieved or not. Sincen'(t) depends orv?(t), we
derive o?(t). The dynamical equations are derived as

1—2f 1—f f
erf(¢o)— erf(¢,)+ = erf(¢z)

12

m'(t)=

t a

02<t>=a§0 2(a+1)c(a+1>aq<t—a>£1 U%(t—b+1)

2

+ (1_f)2q(t), (13
1 2
U(t)= m{(l—2f+2f2)ei¢0+ f(1—f1)
TaTo(l—
X (e ite ‘f’g)}, (14

q(t)= %{1—(1—2f+2f2)erf( bo)—f(1—1f)[erf(¢py)
+erf($2) 1}, (15

where erffy) =(2/\7) [jexp(—w)du and ¢o=6/\20(t
—1), ¢r=[-m"Ht=1)+0]/V20(t—1), ¢p=[m' "t
—1)+6]/\20(t—1), pCa=Dbl/al(b—a)!, and a! is the
factorial with positive integea. The detail derivation of the
dynamical equations is shown in the Appendix.

IV. RESULTS

Figure 2 shows the dependence of the overfdft) on
the loading ratex when the mean firing rate of the memory
pattern isf=0.1, and the threshold i#=0.52, which is
optimized to maximize the storage capaci). The case at
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FIG. 2. The dependence af- and the basin of attraction on the
loading rate af =0.1 and§=0.52. The lower line represents the
initial critical overlap and the upper line does the overlap at the
steady state. The data points and the error bars show the results of
computer simulation of 11 trials a=5000. (a) §=0.0, (b) &
=1.0, (c) 6=2.0. ac=0.27(a), 0.178(b), 0.087(c). The basin of
attraction decreases @sincreases.

6=0.0, (b) at 6=1.0, and(c) at 6=2.0. The lines show
analytical results obtained by the dynamical equatids—

(15). The upper line denotes the steady-state values of the
overlapm'(t) in retrieval of the pattern sequenaa!(t) is
obtained by setting the initial state of the network at the first
memory pattern:x(1)=£'. Setting the initial values at
mi(1)=1, o?(1)=2af+as’*f/(1—f)?, U(1)=0, and
q(1)=f and using the dynamical equatiofi)—(15), m'(t)

is obtained. When the overlap at the steady state is smaller
than 0.5, the critical loading rate is regarded as the storage
capacityac. The storage capacityc is 0.27(a), 0.178(b),

and 0.087(c). The lower line indicates the dependence of an
initial critical overlapm¢ on «. The stored pattern sequence
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FIG. 3. The dependence of the storage capagityon §. The . . o 2
solid line shows the analytical results. The data points and erroriFlG' 4. An_asymptotlc property akc in a large I|m|t_of5 at
bars show the results of computer simulation of 10 trialsNat f=0.1 and§=0.52. The solid line shows the analytical results

=5000. Both results are obtained B0.1 and9=0.52. As the ~While the dashed line shows _Iggc=loglo(2/w62)f%.13. ac
variances? of the fluctuation increases;: decreases. Converges to 0 as order ofé/with respect ts, O(1/&°), in the
large 6° limit.

is retrievable when the initial overlap(1) is greater than verges to 0 as an order of 47 with respect tos, O(1/6%), in

the critical valuemc . The region in whichm®(1) is larger  the larges® limit [22].

thanmc represents the basin of attraction for the retrieval of Next, we discuss the dependency of the basin of attraction
the pattern sequencenc is obtained by setting the initial On é. Each region between the upper and lower lines in Figs.
state of the network ag* with additional noise. We employ 2@, 2(b), 2(c) shows the basin of attraction ab

the following method to add noise. 169 of the minority ~ = 0-0,1.0,2.0, respectively. The basin becomes smaller as a
componentg x;(1)=1] are flipped, while the same number value of § increases. However, the initial critical overla,
of majority componentgx;(1)=0] are also flipped. The ini- ' unchanged. To introduce a threshold, the control scheme is
tial overlapml(1) is given as t 2s/(1— f). Then the mean known to enlarge the basin of the attractid®,20,23.

firing rate of the network is kept equal to that of the memory
patternf. The other initial values are equivalent to the upper
line case. When the overlap at the steady state is smaller than In this paper, we investigated the impact of the imbalance
0.5, the initial overlapn'(1) is regarded as the initial critical between the LTP and LTD of STDP on the retrieval proper-
overlapmc. The data points and error bars indicate the reties of spatiotemporal patterns, employing an associative
sults of computer simulations of 11 trials with 5000 neurons:memory network. We analytically investigated the retrieval
N=5000. The results are obtained from E¢&—(5). The propertles using statistical neurodynamics. Wr_len the fluct_ua-
data points indicate median values and both ends of the err$en of the LTD is assumed to obey the Gaussian distribution
bars indicate 1/4 and 3/4 deviations. A discrepancy betweeWith mean 0 and variancé®, the storage capacity takes a
the values ofn. obtained by the computer simulations and finite value even at Iargé. Thrs |mpI_|es that the balance.
the analytical results is originated from the finite size effectdoes not need to be maintained precisely, but must be main-
of the computer simulatior|<L6]. tained on average. This mechanrsm might work in the brain.

Figure 3 shows the dependence of the storage capasgity Furthermore, the storage capacity converges to 0 as _order
on the standard derivatio of the fluctuation of the LTD at ©O(1/6%) in the larges? limit. Finally, we found that the basin
f=0.1 andd=0.52. The solid line shows the analytical re- of attraction becomes smaller as the fluctuation of the LTD
sults obtained by the same procedure to obtairin Fig. 2. increases while the initial critical overlap remains un-
The data points and error bars show the results of a computéfanged. _ -
simulation of 10 trials aN=5000. The means and standard e found that the storage capacity takes a finite value
deviations ofa.. of 10 trials are plotted as the data points and€Ven at larges. When 4 is larger than 1.0, the LTD some-
the error bars, respectively. As the variareincreasesgc times disappears in the Iearnlng process. The' gpatlotemporal
decreases. In other words, the model is robust against tHRAtterns do not seem to be retrievable. Surprisingly, even in
imbalance between the LTP and LTD of STDP. Thus, thethrs situation, the patterns are retrievable. This implies that
balance does not need to be maintained precisely, but mutiie present model achieves strong robustness against the im-
simply be maintained on average. balance between the LTP and LTD.

Figure 4 shows the asymptotic property @f in a large
limit of 6. The solid line shows the analytical results ob-
tained by the same procedure to obtaig in Fig. 2 atf
=0.1 and #=0.52 while the dashed line shows lgac The detail derivation of the dynamical equatio(i)—
=log,((2/m6%)—1.13. This figure indicates thakc con-  (15) is given in this appendix. At first, we give a sketch of

V. DISCUSSION

APPENDIX: DERIVATION OF DYNAMICAL EQUATIONS
BY THE STATISTICAL NEURODYNAMICS

061914-4
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the derivation. The main point in this derivation is to divide  x;(t+1)=F(u;(t)— )
an internal potential;(t) into two parts, a signal term for the
retrieval of a target pattern and a cross-talk noise term that

ev+l —l v
represents contributions from nontarget patterns and prevents =F z (& ym*(t)
the target pattern from being retrieved. We evaluate the
cross-talk noise term. Specifically, the internal potentjé) 1

of theith neuron at time is expressed dsee Eq.(9)]

v=1gv—1¢v _
NFL T 2 2 S & axn—o).

(AB)
p
Ui('f)=M2:1 (&t =g hHmet) - Nf(1-1) The first term in the functior=(---) of Eq. (A6) is trans-
formed using the periodic boundary condition & = &'
S 1 and§?=§-p'
X2 2 el () (A1) ;
=1 p=1
Z V+1 l)my(t)
Tl -1 o 1_zp-1 P
+ - t ptl_ ep—
=& -8 m O+ 2 (g g HmA) -3 V(t)_z B-m(0),
1 N2 1 p
- p=lep _
NI 2 2 68N (A2 =3 Bm' - 2 &'m' i),
v = v/ =1
J— —_— p J—
=(g"=g hHmo+z), (A3) =2 f{m ) —m" (1)} (A7)

where ¢#= £~ f, mA(t) is the overlap betwee#(t), and The second term in the functid#(- - -) of Eq. (A6) is trans-
x(t) and is given by formed using the periodic boundary condition

p
el v—1¢gv
N Nf(l f Z 2 ij i §ij(t)
(1) = Nf(l NfT 2 &% (A4)

1 NP
= v +1
_m;lzl e &'E M. (A8)
and

To extract the dependency @it from x;(t+1), using Egs.
(A7) and (A8), x(t+1) is divided into two parts, the terms

= i (e - Hma(t) which include& and the terms which do not includé :
P
1 N P Xi(t+l)=F( Zl Ei”{m”_l(t)_mv+l(t)}
~Nf(1-f) ,Z 2 Sl le (). (A5) -
_ _ —1 v+1
_Nf(]_—f) ].21 1/21 €|]§|§ X(t)_0

The first term in Eq(A3) is the signal term and the second
term is the cross-talk noise term. Singgt) in Eq. (A4) — a1 o
depends orgf*, the distribution of the cross-talk noise term =F| &{m () —m* (1)}
z;(t) is unknown. The dependence @fi is extracted from
Xi(t) using the Taylor expansidisee Eq(A10)]. In the ther-
modynamic limitN—o, m#(t) tends to be deterministic. _m ]Zl eﬁgi“gf”lxj(t)
Therefore,xi{”}(t), which denotes that it does not include

., is independent of/. This enables us to assume that the 1 i1
cross-talk noise term (t) obeys a Gaussian distribution with + Z E{m" () —m" (1)}
mean 0 and variance? [16,20. Since the distribution of the '
cross-talk noise term is known, the recursive equation of the NP
overlap is obtainedisee Eq.(A35)]. Nf(l 5 Z 2 ufl gV+1X t)—-6].

To extract the dependence gff from x;(t), the state of -

theith neuron at timé+1 is transformed: (A9)

N
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At time t, the patterné' is designed to be retrieved. There- .
fore, we can assume that'(t) is of order 1 with respect to Xj(t+1)=F §f‘{m“‘1(t)—m“+1(t)}
N, m'(t)~O(1), andm*(t)(u#t) is of order 14N with

respect toN, m“(t)~O(1/yN). Since m*(t)~O(1/\YN), 1

m*~1(t) andm**1(t) are of order YN with respect toN. R 2 e ETIX()
Sincem**1(t) ~O(1/y/N) and ef{~0O(1), thesecond term ( ) iz

in Eg. (A9) can be conS|dered to be of orderyN with 1 p

respect toN. In the thermodynamic limitN—c, the first — m VZ,M ej”igj”gi””xi(t)

and second terms in EGA9) are small. Using the Taylor
expansion up to first order of;(t+1), x;(t+1) is trans- 1 )
formed: “NFL=D € enErEr T ()

x(t+ 1) =xM(t+ 1) +ul (t)x/ @(t+1), (A10) +E )
o 2, &{m —m" (D)}
wherex{")(t+1) is independent o, x/ W (t+1) is dif-

ferential ofx*)(t+1), and 1
o Nfa-D g. V;# €T~
u?“(t)@{mﬂ*(t)—mﬂ“(t)} (A16)
1
) E efiéle x (), (ALD)
=X (e 1) +ul W () ED(t+ 1), (AL7)

XM (t+1)=F (ui(t) - ui*(t)— 0), (A12)
wherexj’(“)(fﬁ)(t), which is independent of botk‘(t) and

) —E' (U (1) — i (1) —
X! W+ 1)=F' (Ut —u#(t)—6).  (AL3)
! ' ! ! is the differential ofx*I(t) and

We assume that the functidn(- - -) is differentiable. This
assumption is valid since the average Bf---) over a B .
Gaussian noise term will be taken in a later sfspe Eq. uJ{“‘Eii}(t)=§f’“{m“‘1(t)—m”+1(t)}

(A34)]. For u#t, the overlapm*(t) is expressed as "

Ei el E T X (D)

P

CNf(1-1)
mH(t) = Nf(1 f)Z —f)x;(t) kz
; —1 v+1
S N 2, S
Nf(l N & 80O +u-1x (o) NT(1-1) 7=
(A14) CNfAop T, (A18)
SRR - O RS ) M
HehE e N X9(t4+1) = F(uy () —u (1) - 0),  (A19)
N

X > (EM2mA Y (t—1)—m#(t— 1)1 (b .
= X{ WD (t+1)=F' (uy()—u" () - 0). (A20)

1 N N
(Nf(l f)) 2 &2 ey . . . .
! The first, second, and third terms on the right-hand side of
Xxj(t—1)x{ “(t). (A15)  Eq.(A18) are of order 1{N with respect taN and the fourth
term is of order IN with respect ta\. In the thermodynamic

If the averages ovef!“(u#1t) ande/i(u#t) are taken on the limit, N—eo, U}M'Eﬁ}(t) is small and Eq(A16) equals Eq.
right-hand side of Eq(A15) the th|rd term vanishes since (A17). Substituting Eq.(A17) into the right-hand side of
E[€fi]=0. Since the third term including;(t—1) depends Eq. (A15) and averaging the resultant expressions aifer
on both ¢ and €fi, &° and ef; are extracted fronx;(t)  andefi and using Ee/i]=0 yield the following equation for
before the averages are taken m“(t)( nFEL):
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N
m#(t)= Nf(i- f)z gﬂx(ﬂ)(t)—FNf(l f Z gﬂ)Z{mufl(t_1)_mﬂ+1(t_1)}xi,(#)(t) (A21)
N
NI & PO+ U =1 —m - 1), (A22)

whereU (t)=(1/N)=N  x/ (¥)(t). Substituting Eq(A22) into Eq.(A2) yields

N p

u(t)=(&rt—¢- l)mt<t>+ NTL f);l Zﬂ (eFri—grm 1)§“x<“><t)+2 U T me (- 1) —2&~ tmeY(t— 1)
o

+E T M (- 1)) - NTT) g 2 TR E (). (A23)

Substituting Eq(A17) into the last term of Eq(A23) yields the following expression far;(t):

E E (&g 1>§“x‘“>(t)+2 U&= 1) —2¢ tme

) (LA ot
WO=(E =8 MO+ e 20 2

N p
S 3 et i D ul - ) e (a2e)

><(t—1)+€{"1m“+1(t—1)}—Nf(lf . 2
) i1 6=

+1_ 1 () +1 14
. f)JElgt(fﬂ b et +Eu (O tme L t-1)

=(&—g Hm'(t) +

N p
2 2 e e P

—28 M- D+ g me T (- 1)) -

N
2 2 e gll« 1§M§M{mu 1(t—1) maetl t—1)}X'(”)(€ )(t)

CNf(1-f) 5 5

N p
2 E §” 1§f‘2 ¢ §“§’”1Xk(t—l)X]-'('“)(Eﬁ)(t)

[l
+
Nf(1—1)) =1 =
1 \2NoP
(m) jE:]_ 21 gM 1gJME 6]|§J §|V+1X (t—l)X'("‘)(f )(t)
==
1 2N P
(Nf(l—f)> ,21 2 T teen et (- 1) W), (A25
< 2

The fifth, sixth, seventh, and eighth terms vanish siBfe{j]=0, and this yields

u(t)=(E =g Hmin +

N p p
2 2 g ThE O+ 2 un{g T me T (-1 -2 e (- )
M M

1:1 t

N p
T} Nf(l 52 2, e P (A26)

= (&M= Hmi(t) +z(b), (A27)
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where

N p p
2= & 2 (G g HEX O+ 2 U e - - 28 tme T (- 1)+ T - 1)
(1 f) =2

]=1 u#t
1 L2
TN 2 2 T (t). (A28)

z(t) is the cross-talk noise term. We assume that the cross-talk noise obeys a Gaussian distribution with mean 0 and
time-dependent variance?(t): E[z(t)]=0,E[(z(t))?]=0?(t) [16,20. The first and second terms af(t) are the same
cross-talk noise terms as those of our previous W&f. The square of;(t) is given by

N p

1 )2 _
{z(t)}z—(Nf(l f)) | (&rt-ge 1>2<§“)2{x‘“><t>}2+2 U m (t=1) - 2& 'm" (- 1)

=1 p#t

2 N p N p
1 -1 (1)(€f) Zu+1
NT(1o f)) 22 (el DDA Nf(l 02 2 €

+Eiv—lmv+ l(t_ 1)}2
o o P o o o p
—e e X e Pt T - D -2 T tme e - D+ g e T - 1))+ 2 UG
n'#t n#t

N p
x{E{”lmﬂfl(t—1)—2Efﬁlmfrl(t—1)+E{**1mf”1(t—1)}Nf(1 f Z 2 gt )

N

P
P T )<t>2 2 (&g g X () (A29)

w'=1 1o #t

2
2 Nf(l—f)) Pl

2 N

p
=(—) > (grt-gt 2(§“>2{x<ﬂ>(t>}2+2 U m (t=1) - 2& m" (- 1)
Nf(1-1)] &

2 p
TGSV CHY L ) D (e ThAE A P b)) (A30)
Nf(l f) J=1 p=1
t a 2
=2 2@rCarpaa(t-a) [] UHt-b+1)+ pELl (A3D)

where p=aN, q(t)=(1/N)SN {x¥(t)}2 ,C,=b!/al(b  The overlap between the statét) and the retrieval pattern
—a)!, a! is the factorial with positive integem, and &'is given by

E[(eff)?]= % SinceE[€/]=0, the fourth, fifth, and sixth

terms in Eq. (A29) vanlsh We applied the relationship N

Zgzo(bca)2= -,Cp in this derivation. SinceE[z(t)]=0, mi(t)= ——— 2 —)x(t)

the variances?(t) is equal toE[{z(t)}?]. We then get the Nf 1-1)=
recursive equation foo?(t)

N
Nf(l ) 2 —HF((&-& Hm 1 (t-1)

t a
204y = — 2(t—
oA(0= 2 2@rnCarpad(t-a) Il UAt=b+1) F2(t=1)—6). (A33)
2
+ q(t). (A32)  Sinceu;(t) is an independent and identical distribution, by
(1—f)2 the law of large numbers, the average ovean be replaced
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noise termz~A(0,0%). Then, the recursive equation for the =51=h ! f " dze ZRz((F((&— g 2)mi 1
overlapm'(t) is transformed: (1- \/_ -
X (t—1)+a(t—1)z— 6))) (A38)
t _ 221202 t

M= r gz T

XF((E=&m " Y(t-1)+z-0))) J_al(t— [(1-2f+2f2)e %0+ f(1—1)

_ 1 1 (" = ~Z212/ ¢ ¢t t_ gt-2 _ _
mEJ'mdze (((E=DHF((&=¢79) X (e~ ¥it+e %)) (A39)
Xxmt=i(t—1)+ o (t—1)z— ))) (A34)

Sincex;(t) —x{*)(t) ~O(1/yN) and N—oo, x¥(t)=x;(t).
1_2f —f f Using this relationship, we derivg(t):
erf(¢,) + 5 erf(¢2),

erf(d’o)_
(A35) ) )
1 1
where z=z/o, erf(y)=(2/N7)[YexpuAdu, and ¢ q(t) = NE MRy =5 2 i) (A40)
= 01\20(t=1), ¢1=[-m'"Ht—1)+6)\20(t-1), & i -
=[m'"}t—1)+6]/y20(t—1), and((- - -)) denotes an av-
erage over the memory pattegt. Since x/ (t)—x/ “)(t)
~0O(1/YN) and the thermodynamic limity— o, is consid- 1 1 foc g 2’2<(F2((§t a2,
ered, x/ (W(t)=x/(t). Using this relationship, we derive =T T — ze'* —-&
oo f(1=1) J2m)
N N xmt~Y(t—1)+o(t—1)z—0))) (A41)
u<t>=$ S, ()= xi(1) (A36)
=1 N =1
- " dze TE(F (8- e Hm (-2 2f)erf(gg)— f(1—1
Tf(1-1) r C =511 ( )erf(po) —f(1—1)
X(t—1)+o(t—1)z—06))) (A37) X (erf( ) +erf(po))}. (A42)
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