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Robustness of retrieval properties against imbalance between long-term potentiation
and depression of spike-timing-dependent plasticity
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Spike-timing-dependent plasticity~STDP! has recently been shown in some physiological studies. STDP
depends on the precise temporal relationship of presynaptic and postsynaptic spikes. Many authors have
indicated that a precise balance between long-term potentiation~LTP! and long-term depression~LTD! of
STDP is significant for a stable learning. However, a situation in which the balance is maintained precisely is
inconceivable in the brain. Using a method of the statistical neurodynamics, we show robust retrieval proper-
ties of spatiotemporal patterns in an associative memory model against the imbalance between LTP and LTD.
When the fluctuation of LTD is assumed to obey a Gaussian distribution with mean 0 and varianced2, the
storage capacity takes a finite value even at larged. This means that the balance between LTP and LTD of
STDP need not be maintained precisely, but must be maintained on average. Furthermore, we found that the
basin of attraction becomes smaller asd increases while an initial critical overlap remains unchanged.
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I. INTRODUCTION

A recent experimental finding indicates that synap
modification in cortical neurons depends on the precise t
poral relationship between presynaptic and postsyna
spikes@1–3#. In particular, presynaptic spikes that prece
postsynaptic firing induce a long-term potentiation~LTP! by
no more than 20 ms, while those that follow postsynap
firing induce a long-term depression~LTD!, with a rapid
transition ~a few ms!. The magnitude of synaptic modifica
tion decays exponentially with the time interval between
esynaptic and postsynaptic spikes. This form of syna
modification has been called spike-timing-dependent plas
ity ~STDP! @4# or temporally asymmetric Hebbian~TAH!
learning@5,6#.

The functional role of STDP has been investigated
many authors. They showed that STDP is a mechanism
synaptic competition@4–9# or a learning mechanism of se
quential patterns@10–16#. An symmetric learning window
depending on spike timing similar to STDP has been stud
and shown to be an appropriate learning rule for sequen
patterns@17–19#. However, this asymmetric learning ru
does not involve LTD. Some authors showed that the bala
between the LTP and LTD of STDP is significant for stab
learning @4,14–16#. In our previous work, we analytically
showed that STDP has the same qualitative effect as the
variance rule when the spatiotemporal patterns are st
since the differences between spike times that induce LT
LTD are capable of canceling out the effect of the firing ra
information @16#. In the brain, a situation in which the ba
ance is maintained precisely is inconceivable. The d
points obtained by experiments are fluctuated in differ
trials @1,3#. Therefore, it is meaningful to discuss more bi
logical plausible situation to investigate the neuronal mec
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nism for sequential learning in the brain. Some authorsnu-
merically investigated the impact of the imbalance betwe
LTP and LTD on the network properties@4,14#.

The aim of this paper is toanalytically discuss the re-
trieval properties of spatiotemporal patterns in an associa
memory model that incorporates the imbalance between
LTP and LTD of STDP using a method of the statistic
neurodynamics@16,20,21#. According to our previous work
when the balance is not precisely maintained, it is imposs
to cancel out the information of firing rate. Consequen
cross-talk noise diverges. However, if the magnitudes of
LTP and LTD are equivalent on average in a learning p
cess, it may be possible to stably retrieve spatiotemporal
terns. Since the ratio of the LTP and LTD is crucial, t
magnitude of the LTD changes while that of the LTP is fixe
We found that the storage capacity takes a finite value e
at larged when the fluctuation of the LTD is assumed
obey a Gaussian distribution with mean 0 and varianced2.
This implies that the balance between the LTP and LTD
STDP need not to be maintained precisely, but must be m
tained on average. This mechanism might work in the bra
Furthermore, we found that a basin of attraction becom
smaller asd increases while an initial critical overlap re
mains unchanged.

II. MODEL

The model containsN binary neurons with reciprocal con
nections. Each neuron has a binary state$0,1%. We define
discrete time steps and the following rule for synchrono
updating:

ui~ t !5(
j 51

N

Ji j xj~ t !, ~1!

xi~ t11!5F@ui~ t !2u#, ~2!
©2003 The American Physical Society14-1
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F~u!5H 1, u>0,

0, u,0,
~3!

wherexi(t) is the state of thei th neuron at timet, ui(t) is the
internal potential of that neuron, andu is a uniform thresh-
old. If the i th neuron fires att, its state isxi(t)51; other-
wise,xi(t)50. Ji j is the synaptic weight from thej th neuron
to the i th neuron. Each elementj i

m of the mth memory pat-
tern jm5(j1

m ,j2
m , . . . ,jN

m) is generated independently by

Prob@j i
m51#512Prob@j i

m50#5 f . ~4!

The expectation ofjm is E@j i
m#5 f , and thusf is considered

to be the mean firing rate of the memory pattern. T
memory pattern is sparse whenf→0 and this coding schem
is called sparse coding.

The synaptic weightJi j follows the form of synaptic plas
ticity, which depends on the difference in spike times b
tween thei th ~post! and j th ~pre! neurons. The time differ-
ence determines whether LTP or LTD is induced. This ty
of learning rule is called spike-timing-dependent plastic
~STDP!. The biological experimental findings show that t
LTP or LTD is induced when the difference in the presyna
tic and postsynaptic spike times falls within about 20 ms@3#.
We define a single time step in equations~1!–~3! as 20 ms,
and durations within 20 ms are ignored. The learning r
based on STDP conforms to this equation:

Ji j 5
1

N f~12 f ! (
m51

p

$j i
m11j j

m2~11e i j
m21!j i

m21j j
m%. ~5!

The number of memory patterns isp5aN, wherea is de-
fined as a loading rate. The LTP is induced when thej th
neuron fires one time step before thei th neuronj i

m115j j
m

51, while the LTD is induced when thej th neuron fires one
time step after thei th neuronj i

m215j j
m51. Since the ratio

of the LTP and LTD is crucial, the magnitude of the LT
changes while the magnitude of the LTP and the time du
tion are fixed.e i j

m is generated independently and obeys
Gaussian distribution with meane and varianced2: e i j

m

;N(e,d2). Figure 1 shows the time function of STDP in o

FIG. 1. The time function of STDP in our model. The LTP
induced when thej th neuron fires one time step before thei th one.
LTD is induced when thej th neuron fires one time step after thei th
one.e i j

m follows a Gaussian distribution with meane and variance
d2.
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model. Whene i j
m50, the balance between the LTP and LT

is precisely maintained and then the model is equivalen
the previous model@16#. A sequence ofp memory patterns is
stored by STDP:j1→j2→•••→j p→j1→••• . In other
words,j1 is retrieved att51, j2 is retrieved att52, andj1

is retrieved att5p11. There is a critical valueaC of the
loading rate, so that the loading rate larger thanaC makes
retrieval of the pattern sequence unstable.aC is called the
storage capacity.

III. THEORY

In this section, we derive dynamical equations that d
scribe the retrieval properties of the network. In this pap
we consider the thermodynamic limitN→`. The i th neu-
ronal internal potentialui(t) at time t can be expressed as

ui~ t !5(
j 51

N

Ji j xj~ t !

5
1

N f~12 f ! (
j 51

N

(
m51

p

$j i
m11j j

m

2~11e i j
m21!j i

m21j j
m%xj~ t ! ~6!

5
1

N f~12 f ! (
j 51

N

(
m51

p

~j i
m11j j

m2j i
m21j j

m!xj~ t !

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t !. ~7!

Using the periodic boundary condition ofj i
p115j i

1 and j i
0

5j i
p , (m51

p (j i
m11j j

m2j i
m21j j

m)5(m51
p ( j̄ i

m11j̄ j
m2 j̄ i

m21j̄ j
m)

with j̄ i
m5j i

m2 f . Using this relationship,ui(t) is given by

ui~ t !5
1

N f~12 f ! (
j 51

N

(
m51

p

~ j̄ i
m112 j̄ i

m21!j̄ j
mxj~ t !

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t ! ~8!

5 (
m51

p

~ j̄ i
m112 j̄ i

m21!mm~ t !

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t ! ~9!

5~ j̄ i
t112 j̄ i

t21!mt~ t !1 (
mÞt

p

~ j̄ i
m112 j̄ i

m21!mm~ t !

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t !, ~10!

wheremm(t) is an overlap betweenj m(t) and x(t) and is
given by
4-2
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mm~ t !5
1

N f~12 f ! (
i 51

N

j̄ i
mxi~ t !. ~11!

The first term in Eq.~10! is a signal term for the retrieval o
the target patternj t11. The second and third terms a
cross-talk noise terms that represent contributions from n
target patterns other thanj t21 and that preventj t11 from
being retrieved. The third term is also a compensation te
originated by a deviation from the balance between the L
and LTD of STDP. Since this term is of orderN with respect
to N, O(N), wheneÞ0, it diverges in the thermodynamicN
limit N→`. This means that the stored limit cycle using t
present learning rule@Eq. ~5!# is unstable in the limit ofN
→` when eÞ0. Therefore, we will discuss thee50 case
e i j

m;N(0,d2).
We derive the dynamical equations using the method

statistical neurodynamics@16,20,21#. When it is possible to
store a pattern sequence, a cross-talk noise term, that is
second and third terms in Eq.~10! is assumed to obey
Gaussian distribution with the average 0 and time-depen
variances2(t) @16,20#. We derive the recursive equations f
mt(t) and s2(t) to investigate whether the memory patte
j t is retrieved or not. Sincemt(t) depends ons2(t), we
derives2(t). The dynamical equations are derived as

mt~ t !5
122 f

2
erf~f0!2

12 f

2
erf~f1!1

f

2
erf~f2!,

~12!

s2~ t !5 (
a50

t

2(a11)C(a11)aq~ t2a!)
b51

a

U2~ t2b11!

1
ad2

~12 f !2
q~ t !, ~13!

U~ t !5
1

A2ps~ t21!
$~122 f 12 f 2!e2f0

2
1 f ~12 f !

3~e2f1
2
1e2f2

2
!%, ~14!

q~ t !5
1

2
$12~122 f 12 f 2!erf~f0!2 f ~12 f !@erf~f1!

1erf~f2!#%, ~15!

where erf(y)5(2/Ap)*0
yexp(2u2)du and f05u/A2s(t

21), f15@2mt21(t21)1u#/A2s(t21), f25@mt21(t
21)1u#/A2s(t21), bCa5b!/a!(b2a)!, and a! is the
factorial with positive integera. The detail derivation of the
dynamical equations is shown in the Appendix.

IV. RESULTS

Figure 2 shows the dependence of the overlapmt(t) on
the loading ratea when the mean firing rate of the memo
pattern is f 50.1, and the threshold isu50.52, which is
optimized to maximize the storage capacity.~a! The case at
06191
n-

m
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f

the

nt

d50.0, ~b! at d51.0, and~c! at d52.0. The lines show
analytical results obtained by the dynamical equations~12!–
~15!. The upper line denotes the steady-state values of
overlapmt(t) in retrieval of the pattern sequence.mt(t) is
obtained by setting the initial state of the network at the fi
memory pattern:x(1)5j1. Setting the initial values a
m1(1)51, s2(1)52a f 1ad2f /(12 f )2, U(1)50, and
q(1)5 f and using the dynamical equations~12!–~15!, mt(t)
is obtained. When the overlap at the steady state is sm
than 0.5, the critical loading ratea is regarded as the storag
capacityaC . The storage capacityaC is 0.27~a!, 0.178~b!,
and 0.087~c!. The lower line indicates the dependence of
initial critical overlapmC on a. The stored pattern sequenc

FIG. 2. The dependence ofaC and the basin of attraction on th
loading rate atf 50.1 andu50.52. The lower line represents th
initial critical overlap and the upper line does the overlap at
steady state. The data points and the error bars show the resu
computer simulation of 11 trials atN55000. ~a! d50.0, ~b! d
51.0, ~c! d52.0. aC50.27 ~a!, 0.178~b!, 0.087~c!. The basin of
attraction decreases asd increases.
4-3
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N. MATSUMOTO AND M. OKADA PHYSICAL REVIEW E 68, 061914 ~2003!
is retrievable when the initial overlapm1(1) is greater than
the critical valuemC . The region in whichm1(1) is larger
thanmC represents the basin of attraction for the retrieval
the pattern sequence.mC is obtained by setting the initia
state of the network atj1 with additional noise. We employ
the following method to add noise. 100s% of the minority
components@xi(1)51# are flipped, while the same numbe
of majority components@xi(1)50# are also flipped. The ini-
tial overlapm1(1) is given as 122s/(12 f ). Then the mean
firing rate of the network is kept equal to that of the memo
patternf. The other initial values are equivalent to the upp
line case. When the overlap at the steady state is smaller
0.5, the initial overlapm1(1) is regarded as the initial critica
overlapmC . The data points and error bars indicate the
sults of computer simulations of 11 trials with 5000 neuro
N55000. The results are obtained from Eqs.~1!–~5!. The
data points indicate median values and both ends of the e
bars indicate 1/4 and 3/4 deviations. A discrepancy betw
the values ofmC obtained by the computer simulations a
the analytical results is originated from the finite size eff
of the computer simulations@16#.

Figure 3 shows the dependence of the storage capacitaC
on the standard derivationd of the fluctuation of the LTD at
f 50.1 andu50.52. The solid line shows the analytical r
sults obtained by the same procedure to obtainaC in Fig. 2.
The data points and error bars show the results of a comp
simulation of 10 trials atN55000. The means and standa
deviations ofaC of 10 trials are plotted as the data points a
the error bars, respectively. As the varianced2 increases,aC
decreases. In other words, the model is robust against
imbalance between the LTP and LTD of STDP. Thus,
balance does not need to be maintained precisely, but m
simply be maintained on average.

Figure 4 shows the asymptotic property ofaC in a large
limit of d2. The solid line shows the analytical results o
tained by the same procedure to obtainaC in Fig. 2 at f
50.1 and u50.52 while the dashed line shows log10aC
5 log10(2/pd2)21.13. This figure indicates thataC con-

FIG. 3. The dependence of the storage capacityaC on d. The
solid line shows the analytical results. The data points and e
bars show the results of computer simulation of 10 trials atN
55000. Both results are obtained atf 50.1 andu50.52. As the
varianced2 of the fluctuation increases,aC decreases.
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verges to 0 as an order of 1/d2 with respect tod, O(1/d2), in
the larged2 limit @22#.

Next, we discuss the dependency of the basin of attrac
on d. Each region between the upper and lower lines in F
2~a!, 2~b!, 2~c! shows the basin of attraction atd
50.0,1.0,2.0, respectively. The basin becomes smaller
value ofd increases. However, the initial critical overlapmC
is unchanged. To introduce a threshold, the control schem
known to enlarge the basin of the attraction@16,20,23#.

V. DISCUSSION

In this paper, we investigated the impact of the imbalan
between the LTP and LTD of STDP on the retrieval prop
ties of spatiotemporal patterns, employing an associa
memory network. We analytically investigated the retriev
properties using statistical neurodynamics. When the fluc
tion of the LTD is assumed to obey the Gaussian distribut
with mean 0 and varianced2, the storage capacity takes
finite value even at larged. This implies that the balance
does not need to be maintained precisely, but must be m
tained on average. This mechanism might work in the bra
Furthermore, the storage capacity converges to 0 as o
O(1/d2) in the larged2 limit. Finally, we found that the basin
of attraction becomes smaller as the fluctuation of the L
increases while the initial critical overlap remains u
changed.

We found that the storage capacity takes a finite va
even at larged. Whend is larger than 1.0, the LTD some
times disappears in the learning process. The spatiotemp
patterns do not seem to be retrievable. Surprisingly, eve
this situation, the patterns are retrievable. This implies t
the present model achieves strong robustness against th
balance between the LTP and LTD.

APPENDIX: DERIVATION OF DYNAMICAL EQUATIONS
BY THE STATISTICAL NEURODYNAMICS

The detail derivation of the dynamical equations~12!–
~15! is given in this appendix. At first, we give a sketch

or FIG. 4. An asymptotic property ofaC in a large limit ofd2 at
f 50.1 andu50.52. The solid line shows the analytical resu
while the dashed line shows log10aC5 log10(2/pd2)21.13. aC

converges to 0 as order of 1/d2 with respect tod, O(1/d2), in the
larged2 limit.
4-4
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the derivation. The main point in this derivation is to divid
an internal potentialui(t) into two parts, a signal term for th
retrieval of a target pattern and a cross-talk noise term
represents contributions from nontarget patterns and prev
the target pattern from being retrieved. We evaluate
cross-talk noise term. Specifically, the internal potentialui(t)
of the i th neuron at timet is expressed as@see Eq.~9!#

ui~ t !5 (
m51

p

~ j̄ i
m112 j̄ i

m21!mm~ t !2
1

N f~12 f !

3(
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t ! ~A1!

5~ j̄ i
t112 j̄ i

t21!mt~ t !1 (
mÞt

p

~ j̄ i
m112 j̄ i

m21!mm~ t !

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t ! ~A2!

5~ j̄ i
t112 j̄ i

t21!mt~ t !1zi~ t !, ~A3!

wherej̄ i
m5j i

m2 f , mm(t) is the overlap betweenjm(t), and
x(t) and is given by

mm~ t !5
1

N f~12 f ! (
i 51

N

j̄ i
mxi~ t ! ~A4!

and

zi~ t !5 (
mÞt

p

~ j̄ i
m112 j̄ i

m21!mm~ t !

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t !. ~A5!

The first term in Eq.~A3! is the signal term and the secon
term is the cross-talk noise term. Sincexi(t) in Eq. ~A4!
depends onj i

m , the distribution of the cross-talk noise ter
zi(t) is unknown. The dependence onj i

m is extracted from
xi(t) using the Taylor expansion@see Eq.~A10!#. In the ther-
modynamic limit N→`, mm(t) tends to be deterministic
Therefore,xi

$m%(t), which denotes that it does not includ
j i

m , is independent ofj i
m . This enables us to assume that t

cross-talk noise termzi(t) obeys a Gaussian distribution wit
mean 0 and variances2 @16,20#. Since the distribution of the
cross-talk noise term is known, the recursive equation of
overlap is obtained@see Eq.~A35!#.

To extract the dependence onj i
m from xi(t), the state of

the i th neuron at timet11 is transformed:
06191
at
nts
e

e

xi~ t11!5F„ui~ t !2u…

5FS (
n51

p

~ j̄ i
n112 j̄ i

n21!mn~ t !

2
1

N f~12 f ! (
j 51

N

(
n51

p

e i j
n21j i

n21j j
nxj~ t !2u D .

~A6!

The first term in the functionF(•••) of Eq. ~A6! is trans-
formed using the periodic boundary condition ofj i

p115j i
1

andj i
05j i

p :

(
n51

p

~ j̄ i
n112 j̄ i

n21!mn~ t !

5 (
n51

p

j̄ i
n11mn~ t !2 (

n51

p

j̄ i
n21mn~ t !,

5 (
n851

p

j̄ i
n8mn821~ t !2 (

n851

p

j̄ i
n8mn811~ t !,

5 (
n51

p

j̄ i
n$mn21~ t !2mn11~ t !%. ~A7!

The second term in the functionF(•••) of Eq. ~A6! is trans-
formed using the periodic boundary condition

1

N f~12 f ! (
j 51

N

(
n51

p

e i j
n21j i

n21j j
nxj~ t !

5
1

N f~12 f ! (
j 51

N

(
n851

p

e i j
n8j i

n8j j
n811xj~ t !. ~A8!

To extract the dependency onj i
m from xi(t11), using Eqs.

~A7! and ~A8!, x(t11) is divided into two parts, the term
which includej i

m and the terms which do not includej i
m :

xi~ t11!5FS (
n51

p

j̄ i
n$mn21~ t !2mn11~ t !%

2
1

N f~12 f ! (
j 51

N

(
n51

p

e i j
n j i

nj j
n11xj~ t !2u D

5FS j̄ i
m$mm21~ t !2mm11~ t !%

2
1

N f~12 f ! (
j 51

N

e i j
mj i

mj j
m11xj~ t !

1 (
nÞm

p

j̄ i
n$mn21~ t !2mn11~ t !%

2
1

N f~12 f ! (
j 51

N

(
nÞm

p

e i j
n j i

nj j
n11xj~ t !2u D .

~A9!
4-5



e-

r

e

of

N. MATSUMOTO AND M. OKADA PHYSICAL REVIEW E 68, 061914 ~2003!
At time t, the patternjt is designed to be retrieved. Ther
fore, we can assume thatmt(t) is of order 1 with respect to
N, mt(t);O(1), and mm(t)(mÞt) is of order 1/AN with
respect toN, mm(t);O(1/AN). Since mm(t);O(1/AN),
mm21(t) andmm11(t) are of order 1/AN with respect toN.
Sincemm11(t);O(1/AN) and e i j

m;O(1), thesecond term
in Eq. ~A9! can be considered to be of order 1/AN with
respect toN. In the thermodynamic limit,N→`, the first
and second terms in Eq.~A9! are small. Using the Taylo
expansion up to first order ofxi(t11), xi(t11) is trans-
formed:

xi~ t11!5xi
(m)~ t11!1ui

$m%~ t !xi8
(m)~ t11!, ~A10!

wherexi
(m)(t11) is independent ofj i

m , xi8
(m)(t11) is dif-

ferential ofxi
(m)(t11), and

ui
$m%~ t !5 j̄ i

m$mm21~ t !2mm11~ t !%

2
1

N f~12 f ! (
j 51

N

e i j
mj i

mj j
m11xj~ t !, ~A11!

xi
(m)~ t11!5F„ui~ t !2ui

$m%~ t !2u…, ~A12!

xi8
(m)~ t11!5F8„ui~ t !2ui

$m%~ t !2u…. ~A13!

We assume that the functionF(•••) is differentiable. This
assumption is valid since the average ofF(•••) over a
Gaussian noise term will be taken in a later step@see Eq.
~A34!#. For mÞt, the overlapmm(t) is expressed as

mm~ t !5
1

N f~12 f ! (
i 51

N

~j i
m2 f !xi~ t !

5
1

N f~12 f ! (
i 51

N

j̄ i
m$xi

(m)~ t !1ui
$m%~ t21!xi8

(m)~ t !%

~A14!

5
1

N f~12 f ! (
i 51

N

j̄ i
mxi

(m)~ t !1
1

N f~12 f !

3(
i 51

N

~ j̄ i
m!2$mm21~ t21!2mm11~ t21!%xi8

(m)~ t !

2S 1

N f~12 f ! D
2

(
i 51

N

j̄ i
m(

j 51

N

e i j
mj i

mj j
m11

3xj~ t21!xi8
(m)~ t !. ~A15!

If the averages overj j
m(mÞt) ande j i

m(mÞt) are taken on the
right-hand side of Eq.~A15!, the third term vanishes sinc
E@e j i

m#50. Since the third term includingxj (t21) depends
on both j j

m and e j i
m , j j

m and e j i
m are extracted fromxj (t)

before the averages are taken
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xj~ t11!5FS j̄ j
m$mm21~ t !2mm11~ t !%

2
1

N f~12 f ! (
kÞ i

N

e jk
m j j

mjk
m11xk~ t !

2
1

N f~12 f ! (
nÞm

p

e j i
n j j

nj i
n11xi~ t !

2
1

N f~12 f !
e j i

mj j
mj i

m11xi~ t !

1 (
nÞm

p

j̄ j
n$mn21~ t !2mn11~ t !%

1
1

N f~12 f ! (
kÞ i

N

(
nÞm

p

e jk
n j j

njk
n11xk~ t !2u D

~A16!

5x
j

(m)(e j i
m )

~ t11!1u
j
$m,e j i

m%
~ t !xj8

(m)(e j i
m )~ t11!, ~A17!

wherexj8
(m)(e j i

m )(t), which is independent of bothj j
m(t) and

e j i
m is the differential ofx

j

(m)(e j i
m )

(t) and

u
j
$m,e j i

m%
~ t !5 j̄ j

m$mm21~ t !2mm11~ t !%

2
1

N f~12 f ! (
kÞ i

N

e jk
m j j

mjk
m11xk~ t !

2
1

N f~12 f ! (
nÞm

p

e j i
n j j

nj i
n11xi~ t !

2
1

N f~12 f !
e j i

mj j
mj i

m11xi~ t !, ~A18!

x
j

(m)(e j i
m )

~ t11!5F„uj~ t !2u
j
$m,e j i

m%
~ t !2u…, ~A19!

xj8
(m)(e j i

m )~ t11!5F8„uj~ t !2u
j
$m,e j i

m%
~ t !2u…. ~A20!

The first, second, and third terms on the right-hand side
Eq. ~A18! are of order 1/AN with respect toN and the fourth
term is of order 1/N with respect toN. In the thermodynamic

limit, N→`, u
j
$m,e j i

m%(t) is small and Eq.~A16! equals Eq.
~A17!. Substituting Eq.~A17! into the right-hand side of
Eq. ~A15! and averaging the resultant expressions overj j

m

ande j i
m and using E@e j i

m#50 yield the following equation for
mm(t)(mÞt):
4-6



ROBUSTNESS OF RETRIEVAL PROPERTIES AGAINST . . . PHYSICAL REVIEW E 68, 061914 ~2003!
mm~ t !5
1

N f~12 f ! (
i 51

N

j̄ i
mxi

(m)~ t !1
1

N f~12 f ! (
i 51

N

~ j̄ i
m!2$mm21~ t21!2mm11~ t21!%xi8

(m)~ t ! ~A21!

5
1

N f~12 f ! (
i 51

N

j̄ i
mxi

(m)~ t !1U~ t !$mm21~ t21!2mm11~ t21!%, ~A22!

whereU(t)5(1/N)( i 51
N xi8

(m)(t). Substituting Eq.~A22! into Eq. ~A2! yields

ui~ t !5~ j̄ i
t112 j̄ i

t21!mt~ t !1
1

N f~12 f !
(
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!j̄ j
mxj

(m)~ t !1 (
mÞt

p

U~ t !$j̄ i
m11mm21~ t21!22j̄ i

m21mm21~ t21!

1 j̄ i
m21mm11~ t21!%2

1

N f~12 f !
(
j 51

N

(
m51

p

e i j
m21j i

m21j j
mxj~ t !. ~A23!

Substituting Eq.~A17! into the last term of Eq.~A23! yields the following expression forui(t):

ui~ t !5~ j̄ i
t112 j̄ i

t21!mt~ t !1
1

N f~12 f !
(
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!j̄ j
mxj

(m)~ t !1 (
mÞt

p

U~ t !$j̄ i
m11mm21~ t21!22j̄ i

m21mm21

3~ t21!1 j̄ i
m21mm11~ t21!%2

1

N f~12 f !
(
j 51

N

(
m51

p

e i j
m21j i

m21j j
m$xj

(m)(e j i
m )

~ t !1u
j
$m,e j i

m%
~ t21!xj8

(m)(e j i
m )~ t !% ~A24!

5~ j̄ i
t112 j̄ i

t21!mt~ t !1
1

N f~12 f !
(
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!j̄ j
mxj

(m)~ t !1 (
mÞt

p

U~ t !$j̄ i
m11mm21~ t21!

22j̄ i
m21mm21~ t21!1 j̄ i

m21mm11~ t21!%2
1

N f~12 f !
(
j 51

N

(
m51

p

e i j
m21j i

m21j j
mx

j

(m)(e j i
m )

~ t !

2
1

N f~12 f !
(
j 51

N

(
m51

p

e i j
m21j i

m21j j
mj̄ j

m$mm21~ t21!2mm11~ t21!%xj8
(m)(e j i

m )~ t !

1S 1

N f~12 f !
D 2

(
j 51

N

(
m51

p

e i j
m21j i

m21j j
m(

kÞ i

N

e jk
m j j

mjk
m11xk~ t21!xj8

(m)(e j i
m )~ t !

1S 1

N f~12 f !
D 2

(
j 51

N

(
m51

p

e i j
m21j i

m21j j
m (

nÞm

p

e j i
n j j

nj i
n11xi~ t21!xj8

(m)(e j i
m )~ t !

1S 1

N f~12 f !
D 2

(
j 51

N

(
m51

p

e i j
m21j i

m21j j
me j i

mj j
mj i

m11xi~ t21!xj8
(m)(e j i

m )~ t !. ~A25!

The fifth, sixth, seventh, and eighth terms vanish sinceE@e i j
m#50, and this yields

ui~ t !5~ j̄ i
t112 j̄ i

t21!mt~ t !1
1

N f~12 f ! (
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!j̄ j
mxj

(m)~ t !1 (
mÞt

p

U~ t !$j̄ i
m11mm21~ t21!22j̄ i

m21mm21~ t21!

1 j̄ i
m21mm11~ t21!%2

1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mx

j

(m)(e j i
m )

~ t ! ~A26!

5~ j̄ i
t112 j̄ i

t21!mt~ t !1zi~ t !, ~A27!
061914-7



n 0 and

N. MATSUMOTO AND M. OKADA PHYSICAL REVIEW E 68, 061914 ~2003!
where

zi~ t !5
1

N f~12 f ! (
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!j̄ j
mxj

(m)~ t !1 (
mÞt

p

U~ t !$j̄ i
m11mm21~ t21!22j̄ i

m21mm21~ t21!1 j̄ i
m21mm11~ t21!%

2
1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mx

j

(m)(e j i
m )

~ t !. ~A28!

zi(t) is the cross-talk noise term. We assume that the cross-talk noise obeys a Gaussian distribution with mea
time-dependent variances2(t): E@zi(t)#50,E@(zi(t))

2#5s2(t) @16,20#. The first and second terms ofzi(t) are the same
cross-talk noise terms as those of our previous work@16#. The square ofzi(t) is given by

$zi~ t !%25S 1

N f~12 f ! D
2

(
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!2~ j̄ j
m!2$xj

(m)~ t !%21(
nÞt

p

U~ t !2$j̄ i
n11mn21~ t21!22j̄ i

n21mn21~ t21!

1 j̄ i
n21mn11~ t21!%21S 1

N f~12 f ! D
2

(
j 51

N

(
m51

p

~e i j
m21!2~j i

m21!2~j j
m!2$xj

(m)(e j i
m )

~ t !%21
2

N f~12 f ! (
j 51

N

(
mÞt

p

~ j̄ i
m11

2 j̄ i
m21!j̄ j

mxj
(m)~ t ! (

m8Þt

p

U~ t !$j̄ i
m811mm821~ t21!22j̄ i

m821mm821~ t21!1 j̄ i
m821mm811~ t21!%12(

mÞt

p

U~ t !

3$j̄ i
m11mm21~ t21!22j̄ i

m21mm21~ t21!1 j̄ i
m21mm11~ t21!%

1

N f~12 f ! (
j 51

N

(
m51

p

e i j
m21j i

m21j j
mx

j

(m)(e j i
m )

~ t !

12S 1

N f~12 f ! D
2

(
j 51

N

(
m851

p

e i j
m821j i

m821j j
m8x

j

(m8)(e j i
m8)

~ t !(
k51

N

(
m8Þt

p

~ j̄ i
m8112 j̄ i

m821!j̄k
m8xk

(m8)~ t ! ~A29!

5S 1

N f~12 f ! D
2

(
j 51

N

(
mÞt

p

~ j̄ i
m112 j̄ i

m21!2~ j̄ j
m!2$xj

(m)~ t !%21(
nÞt

p

U~ t !2$j̄ i
n11mn21~ t21!22j̄ i

n21mn21~ t21!

1 j̄ i
n21mn11~ t21!%21S 1

N f~12 f ! D
2

(
j 51

N

(
m51

p

~e i j
m21!2~j i

m21!2~j j
m!2$xj

(m)(e j i
m )

~ t !%2 ~A30!

5 (
a50

t

2(a11)C(a11)aq~ t2a!)
b51

a

U2~ t2b11!1
ad2

~12 f !2
q~ t !, ~A31!
p

y

where p5aN, q(t)5(1/N)( i 51
N $xi

(m)(t)%2, bCa5b!/a!(b
2a)!, a! is the factorial with positive integera, and
E@(e i j

m)2#5d2. SinceE@e i j
m#50, the fourth, fifth, and sixth

terms in Eq. ~A29! vanish. We applied the relationshi
(a50

b ( bCa)25 2bCb in this derivation. SinceE@zi(t)#50,
the variances2(t) is equal toE@$zi(t)%

2#. We then get the
recursive equation fors2(t)

s2~ t !5 (
a50

t

2(a11)C(a11)aq~ t2a!)
b51

a

U2~ t2b11!

1
ad2

~12 f !2
q~ t !. ~A32!
06191
The overlap between the statex(t) and the retrieval pattern
j t is given by

mt~ t !5
1

N f~12 f ! (
i 51

N

~j i
t2 f !xi~ t !

5
1

N f~12 f ! (
i 51

N

~j i
t2 f !F~~j i

t2j i
t22!mt21~ t21!

1zi~ t21!2u!. ~A33!

Sinceui(t) is an independent and identical distribution, b
the law of large numbers, the average overi can be replaced
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by an average over the memory patternsjm and the Gaussian
noise termz;N(0,s2). Then, the recursive equation for th
overlapmt(t) is transformed:

mt~ t !5
1

f ~12 f !

1

A2ps
E

2`

`

dze2z2/2s2
^^~j t2 f !

3F~~j t2j t22!mt21~ t21!1z2u!&&

5
1

f ~12 f !

1

A2p
E

2`

`

dz̃e2 z̃2/2^^~j t2 f !F~~j t2j t22!

3mt21~ t21!1s~ t21!z̃2u!&& ~A34!

5
122 f

2
erf~f0!2

12 f

2
erf~f1!1

f

2
erf~f2!,

~A35!

where z̃5z/s, erf(y)5(2/Ap)*0
yexp(2u2)du, and f0

5u/A2s(t21), f15@2mt21(t21)1u#/A2s(t21), f2

5@mt21(t21)1u#/A2s(t21), and^^•••&& denotes an av-
erage over the memory patternjm. Since xi8(t)2xi8

(m)(t)
;O(1/AN) and the thermodynamic limit,N→`, is consid-
ered, xi8

(m)(t)5xi8(t). Using this relationship, we deriv
U(t):

U~ t !5
1

N (
i 51

N

xi8
(m)~ t !5

1

N (
i 51

N

xi8~ t ! ~A36!

5
1

f ~12 f !

1

A2p
E

2`

`

dze2z2/2^^F8~~j t2j t22!mt21

3~ t21!1s~ t21!z2u!&& ~A37!
ce

,

.

t-

ro

e

v.
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5
1

f ~12 f !

1

A2p
E

2`

`

dze2z2/2z^^F~~j t2j t22!mt21

3~ t21!1s~ t21!z2u!&& ~A38!

5
1

A2ps~ t21!
$~122 f 12 f 2!e2f0

2
1 f ~12 f !

3~e2f1
2
1e2f2

2
!%. ~A39!

Sincexi(t)2xi
(m)(t);O(1/AN) and N→`, xi

(m)(t)5xi(t).
Using this relationship, we deriveq(t):

q~ t !5
1

N (
i 51

N

$xi
(m)~ t !%25

1

N (
i 51

N

$xi~ t !%2 ~A40!

5
1

f ~12 f !

1

A2p
E

2`

`

dze2z2/2^^F2~~j t2j t22!

3mt21~ t21!1s~ t21!z2u!&& ~A41!

5
1

2
$12~122 f 12 f 2!erf~f0!2 f ~12 f !

3„erf~f1!1erf~f2!…%. ~A42!
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